
SeMaFoR Project
& Concerto-D for decentralized reconfiguration

of Fog systems
Jolan PHILIPPE
PostDoc - SeMaFoR project

Naomod PotW
July 3rd, 2023

Thomas LEDOUX
(STACK)

Hélène COULLON
(STACK)

Charles PRUD’HOMME
(TASC)

Hugo BRUNELIERE
(Naomod)

Context: Fog Architectures

“The Fog extends the Cloud to be closer to the thing that
produce and act on IoT data” [Cisco, mar. 2015]

Cloud data centers

Fog nodes

Edge / IoT devices

Thousands

Millions

Billions

Non-real-time data action, storage

Local data analysis and filtering

Local data collection
+ small calculations

2

SeMaFoR Project

Objectives [SeMaFoR, 2023]
● Designing and developing a decentralized, generic

solution for self-administration of resources.
● Coordinate a fleet of autonomous controllers in a

distributed manner, with each controller having a
local view of its resources.

Problem
● How to administrate a Fog infrastructure?

(size, reliability, dynamic, heterogeneous,...)

3

SeMaFoR proposal for controller coordination

● Monitor its state and the state of the environment
● Analyze to decide which state to reach
● Plan the reconfiguration
● Execute the reconfiguration to reach the new state
○ Knowledge that is common, to take a decision

MAPE-K [IBM, 2006]: Coordinated Control Pattern model

4

Reconfiguration plan

5

Initial
State

Final
State

action1 action2 … actionn

A reconfiguration ≔ a set of actions, answering
● WHERE
● WHAT

● HOW
● WHEN

Deployment example

6

Database Web
Server« use »

1. Install
2. Configure
3. Start the service
4. Prepare the service

1. Install
2. Configure firewall
3. Download
4. Configure parameters
5. Start the service

Database (DB) Web Server (WS)

Machine 1: Machine 2:

Component granularity:
Lifecycle granularity:

DB ≪ WS
DB(3) ≪ WS(4), DB(4) ≪ WS(5)

Deployment example

7

Database Web
Server« use »

1. Install
2. Configure
3. Start the service
4. Prepare the service

1. Install
2. Configure firewall
3. Download
4. Configure parameters
5. Start the service

Database (DB) Web Server (WS)

Machine 1: Machine 2:

Component granularity:
Lifecycle granularity:

DB ≪ WS
DB(3) ≪ WS(4), DB(4) ≪ WS(5)

WHERE

WHAT WHAT

WHERE

HOWHOW

WHEN

Reconfiguration example: update database

8

Database Web
Server« use »

1. Backup data
2. Stop the service
3. Download update
4. Configure parameters
5. Start the service
6. Restore data

1. Pause the service
2. Configure parameters
3. Start the service

Database (DB) Web Server (WS)

Machine 1: Machine 2:

Reconfiguration example: update database

9

Database Web
Server« use »

1. Backup data
2. Stop the service
3. Download update
4. Configure parameters
5. Start the service
6. Restore data

1. Pause the service
2. Configure parameters
3. Start the service

Database (DB) Web Server (WS)

Machine 1: Machine 2:

WS(1) ≪ DB(2), DB(5) ≪ WS(2), DB(6) ≪ WS(3)

Reconfiguration plan of Fog resources

10

Postdoc objectives:
➢ Infer reconfiguration actions
➢ Optimal overall reconfiguration

Challenges:
■ Locally: partial view of the system
■ Collaboration with other nodes

Inspiration:
■ SMT-based [Robillard, apr. 2022]

Initial
State

Final
State

action1 action2 … actionn

Reconfig°
Plan:
action1
action2

...
actionn

Reconfig°
Plan 1

C
om

m
un

ic
at

io
ns

N1

Reconfig°
Plan 2

Reconfig°
Plan n

N2
…

Nn

Constraint with providers and users

11

Provider User

Provides service
Uses service
Fog nodes

Nodes are connected using interfaces to:
● Provide services
● Use external services

creating coordination constraints
(behavioral and sync.)

Reconfiguration of Fog resources: Local goal

12

Goal
Reconfiguration
plan

Provides service
Uses service
Fog nodes

Reconfiguration of Fog resources: Local decision

13

Goal
Reconfiguration
plan

Provides service
Uses service
Fog nodes

Reconfiguration of Fog resources: Local decision propagation

14

Goal
Reconfiguration
plan

Provides service
Uses service
Fog nodes

Reconfiguration of Fog resources: Local plan (Sync + Optimization)

15

Goal
Reconfiguration
plan

Provides service
Uses service
Fog nodes

Approach

16

● Sharing protocol with message passing (rumor-spreading)
- Local inference of behaviors with Constraint Programing (CP)

- Modelisation as automata
- Goal: Find a sequence matching the automata

- Goal constraints
- Coordination constraints

- Local planning with CP
- Overload the automata from local decision

- Add synchronization constraints
- Goal: Find a sequence matching the automata

- Goal constraints
- Coordination constraints

● Produced plan for the Concerto-D language

Modeling Fog component reconfiguration with Concerto-D

17

Concerto-D: A reconfiguration language for decentralized components
- Involved components
- Interactions / connections between components
- Changes in the component

Provider User
Provider User

Concerto-D modelFog view

Concerto-D: Involved components

18

provider1

add("provider1", Provider)
add("provider2", Provider)
add("server", Server)

Concerto-D: Connections between components

19

add("provider1", Provider)
add("provider2", Provider)
add("server", Server)
connect(“provider1”, “service”,
 “server”, “service1”)
connect(“provider1”, “config”,
 “server”, “config1”)
connect(“provider2”, “service”,
 “server”, “service2”)
connect(“provider2”, “config”,
 “server”, “config2”)

provider1

provider2

Concerto-D: State and changes in components

20

update

Example of objective:
● Update a running provider
● End the reconfiguration with a running provider

● update provider
● install provider

Inferred actions:

Concerto-D: Connections between components

pushB(provider, update)
pushB(provider, install)
wait(provider, install)

pushB(provider, update) pushB(provider, install)

behaviors: behaviors: behaviors:

non-blocking
non-blocking

blocking (syncro)

21

(

Constraint resolution: Concerto-D to a labeled automata

2323

Constraint resolution: MiniZinc model

BEHAVIOR := {deploy, suspend, stop, skip}
STATE := {s1, s2, s3}
STATUS := {enabled, disabled}
transitions: Array[STATE][BEHAVIOR] of STATE =...

sequence: Array[1..n] of BEHAVIOR
state: Array[1..n+1] of STATE

service1: Array[1..n+1] of STATUS
…

constraint regular(sequence, transitions)
constraint sequence[i] = skip ⇒ sequence[i+1] = skip

constraint ∀i ∈ 1..n, state[i+1] = transition[state[i]][sequence[i]]
constraint ∀i ∈ 1..n+1, config1[i] = enabled ⇔ state[i] ∈ {s1, s2}
…

solve maximize count(skip, sequence)

Output with init=s3; final=s3; goal=stop; n=10
sequence = [suspend, stop, deploy, skip, skip, skip, skip, skip, skip, skip]
 state = [s3 , s2 , s1 , s3 , s3 , s3 , s3 , s3 , s3 , s3 , s3]

Constraint resolution: MiniZinc into FlatZinc into Solvers

MiniZinc model
file .mzn

Input data
file .dzn

FlatZinc
file .fzn

Chuffed Chuffed

Google OR tools

ECLiPSe

CHOCO

Gecode

PiCat

CPLEX

CoinOR

Gurobi

P
LN

E
S

AT
C

P
LC

G

Compiled to

Compiled to

Run on

)

Example of Concerto-D model and reconfiguration goal: OpenStack

2727

goal(mariadb, update)
goal(*, deploy, final=true)

update mariadb

11 components, all
deployed:

● facts
● common
● haproxy
● memcached
● ovswitch
● rabbitmq
● mariadb
● keystone
● nova
● neutron
● glance

Goal:

Example of Concerto-D model and reconfiguration goal: CPS

2828

1 + 2n components:
● system
● n listeners
● n sensors

Goal: Reconfigure a sensor

Collaboration with STR team from Centrale
Nantes (w. Antoine BERNABEU):

● CPS
○ Listen animals sounds
○ Communicate with a gateway
○ Need to be reconfigured

■ Update of system
■ Change freq. of observation

State of the art of modeling languages for Fog

2929

Abdelghani Alidra, Hugo Bruneliere, Thomas Ledoux.
A feature-based survey of Fog modeling languages.
Future Generation Computer Systems, 2023, 138, pp.104-119.
⟨10.1016/j.future.2022.08.010⟩.

A survey of languages for modeling Fog:

➢ Lack of homogenization
➢ No separation of concerns
➢ Need for multiple representations and

abstractions
➢ Lack of extensibility and refinement

capabilities
➢ Security and privacy not represented
➢ …

Concerto-D is not a language for modeling Fog systems

SeMaFoR’s FML and VeriFog

3030

Future work: FML model to Concerto-D

3131

VeriFog

EMF Model
of FML

Model verification
Concerto-D

Concerto-D
model (Python)

Reconfiguration
goal (Python)

System reconfiguration

MDE approach

3232

VeriFog

EMF Model
of FML

Model verification
Concerto-D

Concerto-D
model (Python)

Reconfiguration
goal (Python)

EMF Model
of Concerto-DModel

Transformation
(e.g., ATL)

Code
generation

System reconfiguration

Student project? Internship?

3333

VeriFog

EMF Model
of FML

Model verification
Concerto-D

Concerto-D
model (Python)

Reconfiguration
goal (Python)

EMF Model
of Concerto-DModel

Transformation
(e.g., ATL)

Code
generation

System reconfiguration

- Task 1: Model Concerto-D using EMF
- Task 2: Allow Python code generation from EMF model of Concerto-D
- Task 3: Study FML and (probably) extend it
- Task 4: Write FML2ConcertoD transformation
- Task 5: Write a workshop article

Concluding remarks

34
[Cisco, mar. 2015]
[IBM, 2006]
[SeMaFoR, 2023]
[Robillard, apr. 2022]

Maher Abdelshkour. From Cloud to Fog Computing. Cisco, 2015
A. Computing et al. An architectural blueprint for autonomic computing. IBM White Paper, 2006.
SeMaFoR - Self-Management of Fog Resources with Collaborative Decentralized Controllers
Simon Robillard et al. SMT-Based Planning Synthesis for Distributed System Reconfigurations. FASE 2022

Postdoc contributions
■ Concerto-D and SeMaFoR project
■ Infer reconfiguration actions (CP-based approach)
■ Communication protocol

Target applications:
■ (SeMaFoR) Smart cities, smart buildings, smart factories, etc.
■ CPS nodes

Perspectives:
■ Benchmarking (solvers, comm. protocols, dist. architectures)
■ Optimization of plan (energetic cost, time, financial cost)
■ MDE approach for bridging Concerto-D to Fog models

References: Questions ?

Backup

36

pushB(facts, uninstall)
pushB(facts, deploy)

facts

11 components, all
deployed:

● facts
● common
● haproxy
● memcached
● ovswitch
● rabbitmq
● mariadb
● keystone
● nova
● neutron
● glance

Goal: reboot facts

Example of stratified assembly and reconfiguration

37

Information sharing protocol - Step I: Propose

38

Information sharing protocol - Step I: Propose

39

Information sharing protocol - Step I: Propose

40

Information sharing protocol - Step I: Propose

41

Information sharing protocol - Step I: Propose

Information sharing protocol - Step II: Send ack

42

43

Information sharing protocol - Step II: Send ack

44

Information sharing protocol - Step II: Send ack

45

Information sharing protocol - Step II: Send ack

Information sharing protocol - Step III: Global ack from root

46

